Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Mol Life Sci ; 81(1): 161, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565808

RESUMO

The susceptibility to autoimmune diseases is conditioned by the association of modest genetic alterations which altogether weaken self-tolerance. The mechanism whereby these genetic interactions modulate T-cell pathogenicity remains largely uncovered. Here, we investigated the epistatic interaction of two interacting proteins involved in T Cell Receptor signaling and which were previously associated with the development of Multiple Sclerosis. To this aim, we used mice expressing an hypomorphic variant of Vav1 (Vav1R63W), combined with a T cell-conditional deletion of Themis. We show that the combined mutations in Vav1 and Themis induce a strong attenuation of the severity of Experimental Autoimmune Encephalomyelitis (EAE), contrasting with the moderate effect of the single mutation in each of those two proteins. This genotype-dependent gradual decrease of EAE severity correlates with decreased quantity of phosphorylated Vav1 in CD4 T cells, establishing that Themis promotes the development of encephalitogenic Tconv response by enhancing Vav1 activity. We also show that the cooperative effect of Themis and Vav1 on EAE severity is independent of regulatory T cells and unrelated to the impact of Themis on thymic selection. Rather, it results from decreased production of pro-inflammatory cytokines (IFN-γ, IL-17, TNF and GM-CSF) and reduced T cell infiltration in the CNS. Together, our results provide a rationale to study combination of related genes, in addition to single gene association, to better understand the genetic bases of human diseases.


Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/genética , Inflamação , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Virulência
2.
Mult Scler ; : 13524585241234489, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424741

RESUMO

BACKGROUND: The glycoprotein CD226 plays a key role in regulating immune cell function. Soluble CD226 (sCD226) is increased in sera of patients with several chronic inflammatory diseases but its levels in neuroinflammatory diseases such as multiple sclerosis (MS) are unknown. OBJECTIVE: To investigate the presence and functional implications of sCD226 in persons with multiple sclerosis (pwMS) and other neurological diseases. METHODS: The mechanisms of sCD226 production were first investigated by analyzing CD226 surface expression levels and supernatants of CD3/CD226-coactivated T cells. The role of sCD226 on dendritic cell maturation was evaluated. The concentration of sCD226 in the sera from healthy donors (HD), pwMS, neuromyelitis optica (NMO), and Alzheimer's disease (AD) was measured. RESULTS: CD3/CD226-costimulation induced CD226 shedding. Addition of sCD226 to dendritic cells during their maturation led to an increased production of the pro-inflammatory cytokine interleukin (IL)-23. We observed a significant increase in sCD226 in sera from pwMS and NMO compared to HD and AD. In MS, levels were increased in both relapsing-remitting multiple sclerosis (RRMS) and secondary-progressive multiple sclerosis (SPMS) compared to clinically isolated syndrome (CIS). CONCLUSION: Our data suggest that T-cell activation leads to release of sCD226 that could promote inflammation and raises the possibility of using sCD226 as a biomarker for neuroinflammation.

3.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189779

RESUMO

The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.


Assuntos
Linfócitos T CD4-Positivos , Sistema Nervoso Central , Proteínas com Domínio T , Humanos , Morte Celular , Inflamação , Mitocôndrias , Proteínas com Domínio T/genética
4.
Front Immunol ; 14: 1108682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122721

RESUMO

Introduction: Narcolepsy type 1 (NT1) is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the orexin neuropeptides in the lateral hypothalamus. Genetic and environmental factors strongly suggest the involvement of the immune system in the loss of orexin neurons. The cerebrospinal fluid (CSF), secreted locally and surrounding the central nervous system (CNS), represents an accessible window into CNS pathological processes. Methods: To gain insight into the biological and molecular changes in NT1 patients, we performed a comparative proteomics analysis of the CSF from 21 recent-onset NT1 patients and from two control groups: group 1 with somatoform disorders, and group 2 patients with hypersomnia other than NT1, to control for any potential effect of sleep disturbances on CSF composition. To achieve an optimal proteomic coverage analysis, the twelve most abundant CSF proteins were depleted, and samples were analyzed by nano-flow liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) using the latest generation of hybrid Orbitrap mass spectrometer. Results and discussion: Our study allowed the identification and quantification of up to 1943 proteins, providing a remarkably deep analysis of the CSF proteome. Interestingly, gene set enrichment analysis indicated that the complement and coagulation systems were enriched and significantly activated in NT1 patients in both cohorts analyzed. Notably, the lectin and alternative complement pathway as well as the downstream lytic membrane attack complex were congruently increased in NT1. Our data suggest that the complement dysregulation in NT1 patients can contribute to immunopathology either by directly promoting tissue damage or as part of local inflammatory responses. We therefore reveal an altered composition of the CSF proteome in NT1 patients, which points to an ongoing inflammatory process contributed, at least in part, by the complement system.


Assuntos
Narcolepsia , Espectrometria de Massas em Tandem , Humanos , Orexinas , Proteoma , Proteômica , Proteínas do Sistema Complemento
5.
Gut ; 72(5): 939-950, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241390

RESUMO

OBJECTIVES: Clinical studies revealed that early-life adverse events contribute to the development of IBS in adulthood. The aim of our study was to investigate the relationship between prenatal stress (PS), gut microbiota and visceral hypersensitivity with a focus on bacterial lipopeptides containing γ-aminobutyric acid (GABA). DESIGN: We developed a model of PS in mice and evaluated, in adult offspring, visceral hypersensitivity to colorectal distension (CRD), colon inflammation, barrier function and gut microbiota taxonomy. We quantified the production of lipopeptides containing GABA by mass spectrometry in a specific strain of bacteria decreased in PS, in PS mouse colons, and in faeces of patients with IBS and healthy volunteers (HVs). Finally, we assessed their effect on PS-induced visceral hypersensitivity. RESULTS: Prenatally stressed mice of both sexes presented visceral hypersensitivity, no overt colon inflammation or barrier dysfunction but a gut microbiota dysbiosis. The dysbiosis was distinguished by a decreased abundance of Ligilactobacillus murinus, in both sexes, inversely correlated with visceral hypersensitivity to CRD in mice. An isolate from this bacterial species produced several lipopeptides containing GABA including C14AsnGABA. Interestingly, intracolonic treatment with C14AsnGABA decreased the visceral sensitivity of PS mice to CRD. The concentration of C16LeuGABA, a lipopeptide which inhibited sensory neurons activation, was decreased in faeces of patients with IBS compared with HVs. CONCLUSION: PS impacts the gut microbiota composition and metabolic function in adulthood. The reduced capacity of the gut microbiota to produce GABA lipopeptides could be one of the mechanisms linking PS and visceral hypersensitivity in adulthood.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Masculino , Feminino , Camundongos , Animais , Síndrome do Intestino Irritável/microbiologia , Disbiose , Fezes/microbiologia , Inflamação
6.
Elife ; 112022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519536

RESUMO

The ability to proliferate is a common feature of most T-cell populations. However, proliferation follows different cell-cycle dynamics and is coupled to different functional outcomes according to T-cell subsets. Whether the mitotic machineries supporting these qualitatively distinct proliferative responses are identical remains unknown. Here, we show that disruption of the microtubule-associated protein LIS1 in mouse models leads to proliferative defects associated with a blockade of T-cell development after ß-selection and of peripheral CD4+ T-cell expansion after antigen priming. In contrast, cell divisions in CD8+ T cells occurred independently of LIS1 following T-cell antigen receptor stimulation, although LIS1 was required for proliferation elicited by pharmacological activation. In thymocytes and CD4+ T cells, LIS1 deficiency did not affect signaling events leading to activation but led to an interruption of proliferation after the initial round of division and to p53-induced cell death. Proliferative defects resulted from a mitotic failure, characterized by the presence of extra-centrosomes and the formation of multipolar spindles, causing abnormal chromosomes congression during metaphase and separation during telophase. LIS1 was required to stabilize dynein/dynactin complexes, which promote chromosome attachment to mitotic spindles and ensure centrosome integrity. Together, these results suggest that proliferative responses are supported by distinct mitotic machineries across T-cell subsets.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas Associadas aos Microtúbulos , Linfócitos T , Animais , Camundongos , Linhagem da Célula , Centrossomo/metabolismo , Segregação de Cromossomos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
7.
Sci Signal ; 15(742): eabl5343, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857631

RESUMO

Signals that determine the differentiation of naïve CD4+ T helper (TH) cells into specific effector cell subsets are primarily stimulated by cytokines, but additional signals are required to adjust the magnitude of TH cell responses and set the balance between effective immunity and immunological tolerance. By inducing the post-thymic deletion of the T cell lineage signaling protein THEMIS, we showed that THEMIS promoted the development of optimal type 1 immune responses to foreign antigens but stimulated signals that favored encephalitogenic responses to self-neuroantigens. THEMIS was required to stimulate the expression of the gene encoding the transcriptional regulator T-BET and the production of the cytokine interferon-γ (IFN-γ), and it enhanced the ability of encephalitogenic CD4+ T cells to migrate into the central nervous system. Consistently, analysis of THEMIS expression in polarized CD4+ T cells showed that THEMIS was selectively increased in abundance in TH1 cells. The stimulation of predifferentiated effector CD4+ T cells with antigen-presenting cells revealed a stimulatory function for THEMIS on type 1 cytokine responses, similar to those observed ex vivo after immunization. In contrast, THEMIS exerted opposing effects on naïve CD4+ T cells in vitro by inhibiting the T cell receptor (TCR)-mediated signals that lead to TH1 cell responses. These data suggest that THEMIS exerts TCR-independent functions in effector T cells, which increase the magnitude of normal and pathogenic TH1 cell-mediated responses.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Células Apresentadoras de Antígenos , Citocinas , Imunidade , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Th1
8.
Brain ; 145(6): 2018-2030, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35552381

RESUMO

Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.


Assuntos
Autoimunidade , Vacinas contra Influenza , Narcolepsia , Animais , Autoantígenos , Hemaglutininas , Inflamação/complicações , Vacinas contra Influenza/efeitos adversos , Interferon gama , Camundongos , Narcolepsia/induzido quimicamente , Neurônios , Orexinas , Linfócitos T/imunologia , Vacinação/efeitos adversos
9.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299013

RESUMO

Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood-brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid receptor antagonization in the periphery had virtually no effect on colitis severity but significantly worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the protection of the physical integrity of the epithelial barrier.


Assuntos
Colite/metabolismo , Interleucina-10/genética , Mucosa Intestinal/efeitos dos fármacos , Naloxona/análogos & derivados , Antagonistas de Entorpecentes/administração & dosagem , Piroxicam/farmacologia , Receptores Opioides/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naloxona/farmacologia , Permeabilidade/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Índice de Gravidade de Doença
10.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053331

RESUMO

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Proteínas com Domínio T/imunologia , Animais , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Transcriptoma/imunologia , Microambiente Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
11.
Proc Natl Acad Sci U S A ; 117(23): 12969-12979, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32434911

RESUMO

CD5 is characterized as an inhibitory coreceptor with an important regulatory role during T cell development. The molecular mechanism by which CD5 operates has been puzzling and its function in mature T cells suggests promoting rather than repressing effects on immune responses. Here, we combined quantitative mass spectrometry and genetic studies to analyze the components and the activity of the CD5 signaling machinery in primary T cells. We found that T cell receptor (TCR) engagement induces the selective phosphorylation of CD5 tyrosine 429, which serves as a docking site for proteins with adaptor functions (c-Cbl, CIN85, CRKL), connecting CD5 to positive (PI3K) and negative (UBASH3A, SHIP1) regulators of TCR signaling. c-CBL acts as a coordinator in this complex enabling CD5 to synchronize positive and negative feedbacks on TCR signaling through the other components. Disruption of CD5 signalosome in mutant mice reveals that it modulates TCR signal outputs to selectively repress the transactivation of Foxp3 and limit the inopportune induction of peripherally induced regulatory T cells during immune responses against foreign antigen. Our findings bring insights into the paradigm of coreceptor signaling, suggesting that, in addition to providing dualistic enhancing or dampening inputs, coreceptors can engage concomitant stimulatory and inhibitory signaling events, which act together to promote specific functional outcomes.


Assuntos
Antígenos/imunologia , Antígenos CD5/metabolismo , Diferenciação Celular/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/fisiologia , Animais , Antígenos CD5/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/genética , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Transdução de Sinais/genética , Transdução de Sinais/imunologia
12.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265335

RESUMO

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund's adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Vírus Elevador do Lactato Desidrogenase/imunologia , Malária Cerebral/imunologia , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Coinfecção/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Inflamação/fisiopatologia , Interferon gama/imunologia , Malária Cerebral/sangue , Malária Cerebral/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei , Plasmodium yoelii , Baço/citologia , Baço/imunologia
13.
J Autoimmun ; 108: 102401, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31948790

RESUMO

The use of autoantigen-specific regulatory T cells (Tregs) as a cellular therapy for autoimmune diseases is appealing. However, it is challenging to isolate and expand large quantity of Tregs expressing disease-relevant T-cell receptors (TCR). To overcome this problem, we used an approach aiming at redirecting the specificity of polyclonal Tregs through autoreactive TCR gene transfer technology. In this study, we examined whether Tregs engineered through retroviral transduction to express a TCR cross-reactive to two CNS autoantigens, myelin oligodendrocyte glycoprotein (MOG) and neurofilament-medium (NF-M), had a superior protective efficacy compared with Tregs expressing a MOG mono-specific TCR. We observed that engineered Tregs (engTregs) exhibited in vitro regulatory effects related to the antigenic specificity of the introduced TCR, and commensurate in potency with the avidity of the transduced TCR. In experimental autoimmune encephalomyelitis (EAE), adoptively transferred engTregs proliferated, and migrated to the CNS, while retaining FoxP3 expression. EngTregs expressing MOG/NF-M cross-reactive TCR had superior protective properties over engTregs expressing MOG-specific TCR in MOG-induced EAE. Remarkably, MOG/NF-M bi-specific TCR-engTregs also improved recovery from EAE induced by an unrelated CNS autoantigen, proteolipid protein (PLP). This study underlines the benefit of using TCRs cross-reacting towards multiple autoantigens, compared with mono-reactive TCR, for the generation of engTregs affording protection from autoimmune disease in adoptive cell therapy.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/imunologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Camundongos , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento
14.
Neurogastroenterol Motil ; 32(2): e13743, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31588671

RESUMO

BACKGROUND: The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation. METHODS: Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice. KEY RESULTS: CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, induced abdominal hypersensitivity in IL-10-/- mice with colitis. CONCLUSION AND INFERENCES: Opioid-mediated analgesic activity of mucosal T lymphocytes remains operating in IL-10-/- mice with impaired immune regulation. The data suggest that endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in inflammatory bowel diseases associated with homozygous "loss of function mutations" in interleukin-10.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-10/deficiência , Mucosa Intestinal/imunologia , Peptídeos Opioides/imunologia , Dor Visceral/imunologia , Animais , Colite/complicações , Colite/imunologia , Inflamação/complicações , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor Visceral/etiologia
15.
PLoS One ; 14(3): e0214321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30925186

RESUMO

BACKGROUND: Biological biomarkers to stratify cancer risk before kidney transplantation are lacking. Several data support that tumor development and growth is associated with a tolerant immune profile. T cells expressing low levels of CD45RC preferentially secrete regulatory cytokines and contain regulatory T cell subset. In contrast, T cells expressing high levels of CD45RC have been shown to secrete proinflammatory cytokines, to drive alloreactivity and to predict acute rejection (AR) in kidney transplant patients. In the present work, we evaluated whether pre-transplant CD45RClow T cell subset was predictive of post-transplant cancer occurrence. METHODS: We performed an observational cohort study of 89 consecutive first time kidney transplant patients whose CD45RC T cell expression was determined by flow cytometry before transplantation. Post-transplant events including cancer, AR, and death were assessed retrospectively. RESULTS: After a mean follow-up of 11.1±4.1 years, cancer occurred in 25 patients (28.1%) and was associated with a decreased pre-transplant proportion of CD4+CD45RChigh T cells, with a frequency below 51.9% conferring a 3.7-fold increased risk of post-transplant malignancy (HR 3.71 [1.24-11.1], p = 0.019). The sensibility, specificity, negative predictive and positive predictive values of CD4+CD45RChigh<51.9% were 84.0, 54.7, 89.8 and 42.0% respectively. Confirming our previous results, frequency of CD8+CD45RChigh T cells above 52.1% was associated with AR, conferring a 20-fold increased risk (HR 21.7 [2.67-176.2], p = 0.0004). The sensibility, specificity, negative predictive and positive predictive values of CD8+CD45RChigh>52.1% were 94.5, 68.0, 34.7 and 98.6% respectively. Frequency of CD4+CD45RChigh T cells was positively correlated with those of CD8+CD45RChigh (p<0.0001), suggesting that recipients with high AR risk display a low cancer risk. CONCLUSION: High frequency of CD45RChigh T cells was associated with AR, while low frequency was associated with cancer. Thus, CD45RC expression on T cells appears as a double-edged sword biomarker of promising interest to assess both cancer and AR risk before kidney transplantation.


Assuntos
Rejeição de Enxerto/imunologia , Antígenos Comuns de Leucócito/metabolismo , Neoplasias/complicações , Linfócitos T/citologia , Adulto , Diferenciação Celular , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Estudos Retrospectivos , Linfócitos T/imunologia
16.
Front Immunol ; 9: 2399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410484

RESUMO

The guanine nucleotide exchange factor Vav1 is essential for transducing T cell receptor (TCR) signals and plays an important role in T cell development and activation. Previous genetic studies identified a natural variant of Vav1 characterized by the substitution of an arginine (R) residue by a tryptophane (W) at position 63 (Vav1R63W). This variant impacts Vav1 adaptor functions and controls susceptibility to T cell-mediated neuroinflammation. To assess the implication of this Vav1 variant on the susceptibility to antibody-mediated diseases, we used the animal model of myasthenia gravis, experimental autoimmune myasthenia gravis (EAMG). To this end, we generated a knock-in (KI) mouse model bearing a R to W substitution in the Vav1 gene (Vav1R63W) and immunized it with either torpedo acetylcholine receptor (tAChR) or the α146-162 immunodominant peptide. We observed that the Vav1R63W conferred increased susceptibility to EAMG, revealed by a higher AChR loss together with an increased production of effector cytokines (IFN-γ, IL-17A, GM-CSF) by antigen-specific CD4+ T cells, as well as an increased frequency of antigen-specific CD4+ T cells. This correlated with the emergence of a dominant antigen-specific T cell clone in KI mice that was not present in wild-type mice, suggesting an impact on thymic selection and/or a different clonal selection threshold following antigen encounter. Our results highlight the key role of Vav1 in the pathophysiology of EAMG and this was associated with an impact on the TCR repertoire of AChR reactive T lymphocytes.


Assuntos
Variação Genética , Miastenia Gravis Autoimune Experimental/etiologia , Miastenia Gravis Autoimune Experimental/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Camundongos , Miastenia Gravis Autoimune Experimental/patologia , Fenótipo , Receptores Nicotínicos/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
17.
Sci Rep ; 8(1): 11245, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050168

RESUMO

Allergic asthma is characterized by a strong Th2 and Th17 response with inflammatory cell recruitment, airways hyperreactivity and structural changes in the lung. The protease allergen papain disrupts the airway epithelium triggering a rapid eosinophilic inflammation by innate lymphoid cell type 2 (ILC2) activation, leading to a Th2 immune response. Here we asked whether the daily oral administrations of the probiotic Escherichia coli strain Nissle 1917 (ECN) might affect the outcome of the papain protease induced allergic lung inflammation in BL6 mice. We find that ECN gavage significantly prevented the severe allergic response induced by repeated papain challenges and reduced lung inflammatory cell recruitment, Th2 and Th17 response and respiratory epithelial barrier disruption with emphysema and airway hyperreactivity. In conclusion, ECN administration attenuated severe protease induced allergic inflammation, which may be beneficial to prevent allergic asthma.


Assuntos
Alérgenos/administração & dosagem , Asma/prevenção & controle , Escherichia coli/crescimento & desenvolvimento , Fatores Imunológicos/administração & dosagem , Papaína/administração & dosagem , Probióticos/administração & dosagem , Administração Oral , Animais , Asma/induzido quimicamente , Asma/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Respiratória/patologia , Células Th17/imunologia , Células Th2/imunologia , Resultado do Tratamento
18.
Sci Signal ; 11(538)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991650

RESUMO

The activation of T cells requires the guanine nucleotide exchange factor VAV1. Using mice in which a tag for affinity purification was attached to endogenous VAV1 molecules, we analyzed by quantitative mass spectrometry the signaling complex that assembles around activated VAV1. Fifty VAV1-binding partners were identified, most of which had not been previously reported to participate in VAV1 signaling. Among these was CD226, a costimulatory molecule of immune cells. Engagement of CD226 induced the tyrosine phosphorylation of VAV1 and synergized with T cell receptor (TCR) signals to specifically enhance the production of interleukin-17 (IL-17) by primary human CD4+ T cells. Moreover, co-engagement of the TCR and a risk variant of CD226 that is associated with autoimmunity (rs763361) further enhanced VAV1 activation and IL-17 production. Thus, our study reveals that a VAV1-based, synergistic cross-talk exists between the TCR and CD226 during both physiological and pathological T cell responses and provides a rational basis for targeting CD226 for the management of autoimmune diseases.

19.
Front Immunol ; 8: 1096, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959254

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with an increasing incidence in developed countries. Recent reports suggest that modulation of the gut microbiota might be one promising therapy for MS. Here, we investigated whether the probiotic Escherichia coli strain Nissle 1917 (ECN) could modulate the outcome of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We evidenced that daily oral treatment with ECN, but not with the archetypal K12 E. coli strain MG1655, reduced the severity of EAE induced by immunization with the MOG35-55 peptide. This beneficial effect was associated with a decreased secretion of inflammatory cytokines and an increased production of the anti-inflammatory cytokine IL-10 by autoreactive CD4 T cells, both in peripheral lymph nodes and CNS. Interestingly, ECN-treated mice exhibited increased numbers of MOG-specific CD4+ T cells in the periphery contrasting with severely reduced numbers in the CNS, suggesting that ECN might affect T cell migration from the periphery to the CNS through a modulation of their activation and/or differentiation. In addition, we demonstrated that EAE is associated with a profound defect in the intestinal barrier function and that treatment with ECN, but not with MG1655, repaired intestinal permeability dysfunction. Collectively, our data reveal that EAE induces a disruption of the intestinal homeostasis and that ECN protects from disease and restores the intestinal barrier function.

20.
J Immunol ; 199(8): 2758-2766, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28877990

RESUMO

Themis is a new component of the TCR signaling machinery that plays a critical role during T cell development. The positive selection of immature CD4+CD8+ double-positive thymocytes and their commitment to the CD4+CD8- single-positive stage are impaired in Themis-/- mice, suggesting that Themis might be important to sustain TCR signals during these key developmental processes. However, the analysis of Themis mRNA levels revealed that Themis gene expression is rapidly extinguished during positive selection. We show in this article that Themis protein expression is increased in double-positive thymocytes undergoing positive selection and is sustained in immature single-positive thymocytes, despite the strong decrease in Themis mRNA levels in these subsets. We found that Themis stability is controlled by the ubiquitin-specific protease USP9X, which removes ubiquitin K48-linked chains on Themis following TCR engagement. Biochemical analyses indicate that USP9X binds directly to the N-terminal CABIT domain of Themis and indirectly to the adaptor protein Grb2, with the latter interaction enabling recruitment of Themis/USP9X complexes to LAT, thereby sustaining Themis expression following positive selection. Together, these data suggest that TCR-mediated signals enhance Themis stability upon T cell development and identify USP9X as a key regulator of Themis protein turnover.


Assuntos
Endopeptidases/metabolismo , Células Precursoras de Linfócitos T/fisiologia , Proteínas/metabolismo , Linfócitos T/fisiologia , Timo/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Seleção Clonal Mediada por Antígeno , Proteína Adaptadora GRB2/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Ativação Linfocitária , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...